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Abstract

The paper analyze the similarity properties of demineralization processes in cracked porous materials, coupled with
diffusive and advective mass transfer through fractures. The aim is to find out, whether, when and how fractures ac-
celerate or magnify the overall chemical degradation process. A dimensional analysis of a simplified dissolution process
around a fracture channel reveals different self-similar properties for diffusion and advection dominated mass transport
in the fracture. For a pure diffusive transport, the fracture degradation length develops with the quadratic root of time;
while it evolves with the square root of time when advection dominates. These asymptotic behaviors are confirmed by
model-based simulations of ‘real’ calcium leaching in cracked cement-based materials. It is shown, that a diffusion
dominated mass transport in a fracture does not significantly accelerate the overall chemical degradation, since the one-
dimensional-degradation through the porous material catches up with the initially faster diffusion through the fracture.
In turn, advection dominated mass transfer in fractures can significantly accelerate the overall calcium depletion for
‘high’ fluid velocities in the fracture. Finally, diffusive dominated mass transport in a crack network may also accelerate
the calcium leaching process for small values of crack spacing factors. A rough analytical solution for estimating this
effect of a crack network is derived and validated through model-based simulations. © 2001 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

It has long been argued, that cracks and fractures affect the durability of e.g. concrete structures sub-
jected to chloride penetration, drying, calcium leaching, etc., due to the acceleration of the overall mass
transport of liquids and ions through the crack network. However, less is known whether, when and how
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fractures accelerate or magnify the degradation process. For instance, in the case of chloride induced
steel corrosion, Pettersson et al. (1996) and Schiessl and Raupach (1997) provided experimental evi-
dence that small cracks do not significantly increase the risk of steel corrosion. On the other hand,
studies reported by Samaha and Hover (1992) and Gérard and Marchand (2000) indicate that the material
diffusivity may increase by up to 10-20%. Experimental results of Locoge et al. (1992) show that micro-
cracks have no influence on the mass transfer as such, but can increase the amount of free chloride
ions accessible to transfer. The effect of cracks on the moisture transport properties of cement based
materials has also been studied. It has been found that cracks have a strong influence on the imbibition
process in mortar and concrete (see Keer et al., 1989; Daian and Saliba, 1993). Theoretical works have
also pointed out that cracks may increase by several orders of magnitude the drying diffusivity of concrete
(see e.g. Bazant and Raftshol, 1982). However, later experimental results revealed that cracks have a
smaller influence on the drying process than theoretically expected (Bazant et al., 1987; Daian and Saliba,
1993).

Cracks and fractures in concretes and rocks are critical to the durability performance of nuclear waste
storage systems, as the safety of e.g. a deep geological nuclear waste disposal depends on the quality of both
the host rock surrounding the repository (quantified by its low permeability), and the concrete barrier, liner
and concrete encasement of containers. On the ‘rock side’, the effect of a fracture on the radionuclide
transport in rock was subjected to intensive research (see e.g. Grisak and Pickens, 1980). It was found that
the risk of water pollution by convective contaminant transport in rock fractures is reduced by diffusive
losses in the matrix, since the porous material surrounding the crack (i.e. the host rock) may play the role of
a diffusive sink (see e.g. Neretnicks, 1980; Tang et al., 1981). In addition, hyperalkaline fluid bordering the
nuclear waste repository may deposit calcium in cracks and fractures of the surrounding rock (Savage and
Rochelle, 1993; Steefel and Lichtner, 1994). On the ‘concrete side’, the problem of chemical degradation by
calcium leaching induced by raining water or streaming water (for underground repositories) has been
addressed in recent years. On a material level, the physical chemistry of chemical degradation due to water
intrusion or streaming ground water is now well understood (see e.g. Berner, 1992; Reardon, 1992); and the
chemical degradation of uncracked concrete over extended periods of time can be predicted today with
some confidence by model-based simulations of the coupled diffusion—dissolution process (see e.g. Buil
et al., 1992; Adenot, 1992; Adenot and Buil, 1992; Gérard, 1996; Delagrave et al., 1997; Torrenti et al.,
1999; Ulm et al., 1999; Mainguy and Coussy, 2000; Mainguy et al., 2000). The effect of a fracture or a crack
network, however, on the overall chemical degradation process of concrete structures, which may ulti-
mately impair the shielding function of the concrete barrier, is still not clear (Gérard, 1996; Tognazzi, 1998).
Current practice in concrete application in nuclear waste containment is to accept or reject a concrete
container with regard to crack size specifications.

The purpose of this paper, therefore, is to analyze the effect of cracks and fractures on coupled diffusion—
dissolution processes in porous materials. While developed around the topic of the demineralization process
of cementitious materials, this analysis may also be relevant to other diffusion—dissolution, diffusion—
sorption, and diffusion—precipitation processes that occur in cracked porous materials, ranging from ther-
mal oxidation of silicon during manufacturing of integrated circuits (Rao and Hughes, 2000), oxidation of
titanium alloys (Lagoudas et al., 2000) to the demineralization of trabecular bone leading to osteoporosis
(Martin and Burr, 1989). The paper is organized as follows: In the first part, we will investigate the simi-
larity properties of an idealized coupled diffusion—dissolution process in a porous material separated by a
fracture channel, through which dissolved ions are transported by both diffusion and advection. The
similarity properties will be analyzed in the second part of this paper by numerical simulations of ‘real-life’
multi-stage demineralization processes, which characterize calcium leaching in cement-based materials.
Finally, the problem of a crack network constituted of equally spaced parallel fractures of same width will
be addressed. Some practical conclusions as for the durability performance of concrete affected by cracks
will be drawn at the end of this paper.
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2. Reference problem: diffusion and advection in a fracture channel of a chemically reactive porous medium
2.1. Idealized geometry and problem

Consider a semi-infinite porous medium y > 0, separated at x = 0 by a semi-infinite fracture channel of
constant width 25 (Fig. 1). The porous continuum is assumed to be composed of a solid skeleton, in which a
mineral (e.g. calcium) is bound, which is also present in ionic form (e.g. Ca>"-ions) in the interstitial pore
solution saturating the pore space. Initially at chemical equilibrium, a demineralization process (e.g. cal-
cium depletion) will occur when the ionic mineral concentration in the interstitial solution is lowered
through a prescribed mineral concentration at the boundary, which is lower than the equilibrium calcium
concentration. For the simplified problem at hand, this boundary is composed of the boundary of the
porous material, x ¢ | — 2b; 0], and the fracture channel walls y > 0 at x = 0 and x = —2b. It is through this
fracture channel, that calcium can be evacuated at a higher diffusion rate (when compared to the diffusivity
of the porous material). It is usually assumed that the ion transport through the fracture is governed by
pure diffusion. Recent experimental results of calcium leaching of cracked cementitious materials, however,
suggest that calcium in the fracture may also be transported by water flux, evacuating at ‘high’ velocity of
the solvent (e.g. water) the solute through the fracture (Torrenti et al., 1999). In deed, cement-based ma-
terials are low permeable porous media where water flow is usually a slow process. Hence, the hydraulic
conductivity of an individual fracture is large in comparison with the low hydraulic material conductivity,
such that a small crack in a large concrete slab may dominate the flow system (Walton and Seitz, 1992).
This motivates the study of both diffusion dominated and advection dominated mass transport in the
fracture.

To study the similarity properties of the simplified problem, the following assumptions are introduced:

(1) The fracture width 2b and the porosity ¢ of the solid matrix are not changed due to the mineral
dissolution process. The diffusion coefficient in the solid matrix Dy, and the hydrodynamic coefficient in the
fracture Dy, therefore, will be assumed constant. In addition, the idealized geometry of smooth and parallel

Porous medium Porous medium

Fracture channel

< —

Fig. 1. Fracture-porous medium system. A diffusion/advection process occurs in the fracture coupled with diffusion and dissolution in
the porous medium.
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fracture walls comes to assume tortuosity effects negligible, and corresponds to an upper bound of the flow
that occurs in ‘real’ non-smooth fractures encountered in cement-based materials.

(2) The fracture opening, 2b, is much smaller than the fracture length; and the concentration in x-
direction in the fracture has a uniform value at all times. Furthermore, the flow of the solvent in the fracture
is assumed laminar with average velocity V representing the simplest case of a constant hydraulic gradient
along the fracture. These hypotheses provide the basis for a one-dimensional (1D) analysis of mass trans-
port along the fracture (Tang et al., 1981).

(3) The diffusion process in the matrix only occurs in the x-direction (i.e. no diffusion in the y-direction),
and is driven by a zero solute concentration boundary condition prescribed at the inlet of the channel at
v =0 over the fracture width —2b < x < 0. This comes to assume a much faster diffusion or advection
process in the fracture than in the adjacent porous material.

2.2. Governing equations
In the simplified model, it is assumed that the ions, which are dissolved in the uncracked material, are

only evacuated through the fracture. The corresponding mass conservation in the x-direction in the porous
material reads (Bear, 1991; Mainguy and Coussy, 2000):

apm amm a apm _
¢ or or —a<¢Dm§) =0, x,»t>0. (1)
and the one in the fracture (Bear, 1993):
Opy | O Opy [9.]
—+—| —Dr— = . 2
at+@y< fay+fo +2b 0, y»,t>0 (2)

In Egs. (1) and (2), p,, = #c and p; = .#c denote the concentration of the solute (e.g. calcium ions), with
. the molar mass of the solute, and ¢ the molar concentration. In Eq. (1), m,, stands for the apparent
volume mass of the same mineral bound in the skeleton, and Omy, /0t is the skeleton mass variation due to
the dissolution process described below. The solvent in the porous continuum is assumed at rest, so that the
solute mass transport only occurs through molecular diffusion, described by Fick’s first law (term of the
form —¢D,,0p,,/0x). In turn, the ion flux in the fracture in Eq. (2) is governed by two phenomena: The flux
—Dy0p; /0y accounts for the diffusive mass transport in the fracture and the mechanical dispersion origi-
nating from variations of the fluid velocity across the fracture (i.e., Taylor (1953) dispersion) and the
roughness of the fracture wall (see e.g. Ippolito et al., 1994; Sun, 1996). However, due to the assumed
perfect geometry of the fracture, this geometrical dispersion will not be considered in this study. The second
phenomenon is the ion flux transported by advection of the solvent (e.g. water) at velocity V through the
fracture, and is expressed by ¥ p; in Eq. (2). Finally, [g,] stands for the jump in solute flux over the fracture
of opening 2b. This jump can be expressed from the diffusive flux associated with Fick’s first law from the
adjacent porous continuum at x = 0. Taken the symmetry of the fracture channel, this jump is equal to
twice the diffusive flux from the adjacent porous material:

_ 9P
[9:] = =26Dm 5 o (3)

The mass conservation and conduction laws need to be completed by the chemical dissolution law and
the initial and boundary conditions. At chemical equilibrium, the molar concentration c¢ of the solute in the
interstitial pore solution is equal to the chemical equilibrium concentration c.q. Chemical equilibrium
means that the probability that the mineral will dissolve from the skeleton is equal to the probability that
another molecule will precipitate from the solution onto the skeleton. In return, if ¢ < c¢q, the mineral will
dissolve from the skeleton. If we note p,, = .#ceq the corresponding volume mass density at chemical
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equilibrium, and my, the apparent volume mass of the same mineral bound in the skeleton, the instanta-
neous dissolution of the mineral bound in the skeleton is described by (Mainguy and Coussy, 2000):

My, = O, Pm — ,Deq < Oa Mm (pm - peq) =0. (4)

Furthermore, at the interface x = 0 between the fracture and the matrix, the continuity of the solute
concentration c¢ reads:

pr(v:t) = p,(0,3,8), »,t>0. (5)
In addition, for an initially undegraded material, the initial conditions at time ¢ = 0 are defined by Eq. (4):
pm(x7y70) :pcq7 mm(xayao) = my, x7}’> Oa (6)

where my is the initial apparent volume mass density of the mineral bound in the skeleton. Egs. (5) and (6)
define the initial condition in the fracture:

pf( aO):pm(O7y70):peq7 yZO (7)
and the boundary condition reads:
pi(y=0,6)=0, ¢t>0. (8)

It is remarkable that the problem defined by the set of equations (1) to (8) simplifies to two orthogonal 1D
diffusion problems coupled through the concentration continuity at the interface x = 0, and the influx of
solute from the porous medium into the fracture channel. The boundary condition (8) at the inlet of the
fracture will induce a decrease of solute concentration in the fracture through diffusion and advection. Then
the coupling between the two 1D equations through Eq. (5) will lead to a decrease of the solute concen-
tration in the porous continuum. In turn, the solute flux (3) will trigger a dissolution process in the x-
direction, inducing a chemical degradation of the porous material.

2.3. Invariants of diffusion or advection dominated flow in the fracture

A preliminary screening of invariants of the problem defined by the set of equations (1) to (8) indicates
that the dimensionless unknowns of the problem,

_ 1% _ P _ m
Pr="";  Pp= m = (9)

Peq Peq mo
are functions of the following five invariants:

X y y Dt o d)peq

IV AN A A T T

Invariants 7; and 7, are the Boltzmann variables of the two 1D diffusion problems in the porous continuum
and the fracture considered separately. In turn, following first principles of dimensional analysis, a com-
bination of invariants 7, and 73 gives the following invariant

(10)

T =

2
=4 (11)
3 Dy

For a characteristic length scale y = L, of the diffusion or advection in the fracture, this invariant turns out
to be the Péclet number Pe = VL,/D;, which quantifies the relative importance of the diffusive transport
versus the advective transport of solute through the fracture: for Pe < 1, the effect of advection becomes
negligible compared to the diffusion process, and the problem is governed by a pure diffusive mass transfer
in the fracture; and for Pe > 1 it is the inverse. The remaining invariants 74 and 75 will be detailed later.
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It is instructive to inspect the solution of the problem in terms of the invariants governing the two limit
cases of a diffusion dominated and an advection dominated mass transport in the fracture:

e For Pe < 1, the solution does not depend on 73, and the unknowns of the problem (9) depend only on
invariants w;, 7, 7y and ws:

pr = F (1, 1y, 15); P = Y (11, 12, Ty, T5); iy = H (7, T, Ty, TT5) (12)
or equivalently:

= FGL) = GEILE; = A% E0), (13)
where we made use of the assumption of a uniform distribution in the x-direction of the solvent in the

fracture. In Eq. (13), X = ny, f = 74, ¢ = 75, while the dimensionless coordinate y characterizing the diffusion
process in the fracture is obtained as product and power function of the invariants m, and 7,:

1 Do\ V4
Pogxl: y=m 2n4:y1/m(7m) . (14)

e For Pe > 1, the second invariant 7, does not enter the solution of the problem, i.e.:
Py = F (13, M4, T5); P = Y (11, M3, T4, 75 )5 My, = H (701, T3, Tg, TT5) (15)
or equivalently:
pr=7F(:te);  pm=9%Xyle);  mm=A(X 1) (16)

where the dimensionless coordinate y characterizing the advection process in the fracture is now obtained as
a product function of the invariants 73 and m4:

Pe>>1 *_@—L % 1/2 (17)
YT v\ )

Egs. (14) and (17) indicate a self-similar time—space relation proportional to the quadratic root of time in
a diffusion controlled mass transport in the fracture (i.e., y(¢) o< t'/* if Pe < 1), and a square root depen-
dency for an advection controlled mass transport (i.e., y(¢) oc £'/2 if Pe > 1). The t'/*-dependency of the
diffusion controlled mass transport translates the fact that the mass transport is governed by two coupled
ID-diffusion process, one in the y-direction through the fracture, the other in the x-direction through the
bulk material. In return, the advection dominated mass transport through the fracture is governed by a
given solvent velocity V, and the rate-determining process, therefore, is defined by the ¢!/>-dependency of
the solute arrival in the fracture.

Finally, the remaining invariants X = 7, f = 4 and ¢ = &5 are not affected by the mass transport mode in
the fracture. This is readily understood from their physical significance: Invariant x = 7, is the Boltzmann
variable characterizing the diffusion process in the porous material, which is not affected by the transport
mode in the fracture. Similarly, the invariant # = 74 is a normalized time invariant, which relates the solute
diffusion length 2v/Dyt in the porous material to the fracture width, or more precisely to an effective
fracture width, magnified by the inverse of the bulk porosity, 2b/¢. This invariant introduces a gauge time
T, which is not changed when the Péclet number changes:

Femy = (é)l/z; fb:%‘i)z. (18)

Last, invariant ¢ = 75 can be interpreted as a macroscopic solubility constant of the dissolution process,
which relates at equilibrium the apparent chemical equilibrium mineral mass density in solution, ¢p.,, to
the initial mineral mass density, m, in the solid phase:



M. Mainguy et al. | International Journal of Solids and Structures 38 (2001) 7079-7100 7085

PP
my ’

£=Tms5 = (19)
With these invariants in hand, it becomes possible to study the asymptotic behavior of diffusion dominated
and advection dominated mass transport in the fracture.

2.4. Large time asymptotic behavior of diffusion and advection dominated flow in the fracture

We first recall the solution of the 1D problem of diffusion and dissolution in the porous medium. This
problem is obtained when solving the set of equations (1) and (4) for y = 0 and x > 0, together with a zero
boundary condition prescribed at x = 0. This problem is similar to the well-known Stefan Problem often
encountered in heat problems with change of state (see e.g. Carslaw and Jaeger, 1959). In the considered
case of an instantaneous demineralization process, the solution is characterized by the presence of a sharp
dissolution front or wave (Lichtner et al., 1986; Novak, 1993) propagating at finite velocity through the
bulk material. The position x4 of the dissolution front depends on the square root of time, and is given by
(Mainguy and Coussy, 2000):

xq(t) = 2%a (&) VDnt, (20)
where X4 = X4(¢) is the solution of the following equation:
eexp(—x;) — v/mxqerf(xq) = 0. (21)

The dissolution front located by x4 (see Fig. 2) separates a completely degraded zone where the solid
mineral is entirely dissolved (m,, = 0 for x < x4), from an undegraded zone where the solid mineral is at the
initial value (m,, = my for x > xq).

The instantaneous dissolution process implies also the existence of a finite degraded depth along y at the
fracture—solid matrix interface (x = 0). This degraded depth, to which we will refer as fracture degradation
length, is noted yy and is shown in Fig. 2. For large times 7 > 1 < ¢ > 13, for which the mass transport in
the fracture is in a quasi-steady state condition with the solute influx from the surrounding porous medium,

y

Va

(degraded)

<
<

v

Xa

Fig. 2. Definition of the degradation profile with x4 and yy4 the degradation lengths in the x-direction and along the fracture channel.
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the solution of the problem becomes independent of the normalized time 7, and Egs. (13) and (16) reduce to
(Mainguy and Ulm, 2000):

pr = ,0/‘7(_)7’ 8); Pm = g(?@f,g); My = %(56,3773)~ (22)

In Eq. (22), y depends on the Péclet number. More precisely, Egs. (14), (17) and (22) imply the following
forms of y,; for the two limit cases at large times:

e Diffusion dominated Pe < 1:

A , 2 ¢ \'*
e 80 =y (5-) 23)
¢ \ Dn
where 7§ (¢) is the dimensionless front position function, which — similarly to X4(¢) in Eq. (20) — links the
fracture degradation length to the macroscopic solubility ¢. Eq. (23) indicates that the fracture degradation
length develops as a linear function of the quadratic root of time (i oc #!/4), and is scaled by the square
root of the crack opening (4 o /2b/¢). For large times ¢ > 1y, due to the #!/4-dependency, the diffusion
through the fracture slows down in time, in comparison with the 1D degradation process, which penetrates
with the square root of time into the uncracked bulk material. The solute diffusion through the fracture,
therefore, is not expected to significantly increase the chemical degradation of the material.
e Advection dominated Pe > 1:

ud v, 261\
s 0 =10ry (5 ) (24)
where 729 (¢) is the dimensionless front position function of the advection dominated transport mode in the
fracture. The fracture degradation length evolves here as a function of the square root of time (3% o #/2),
and is scaled linearly by the crack opening (3% o 2b/¢). A t'/>-dependency also characterizes the degra-
dation process in the uncracked porous material (i.e. Eq. (20)). Hence, it is expected that the advective
transport of ions through the fracture may increase the overall degradation kinetics of the bulk material by
a multiplying factor, depending on the solvent velocity ¥ and the effective crack opening 2b/¢.

In between these two limit cases, the evolution of the degraded depth along the fracture cannot be
determined analytically. However, as the Péclet number goes from small values to large values, it can be
expected, that the degraded depth development will switch progressively from the asymptotic quadratic
root behavior in time to a square root behavior.

3. Similarity properties of ‘real’ calcium leaching in cracked cement-based materials

The relevance of the asymptotic solutions (23) and (24) of the studied reference problem is defined by the
gauge time t,, which increases with (b/¢$)*/D,,. For concrete applications in nuclear waste containment,
maximum crack openings due to shrinkage are on the order of 256 < 1 mm, the porosity is on the order of
¢ = 0.1-0.5, and the calcium diffusivity is ¢Dy, ~ 10712-10~"" m?/s (Tognazzi, 1998). This gives a rough
estimate of 1, < 30 days, which implies that the asymptotic expressions (23) and (24) are relevant for as-
sessing the effect of cracks on the chemical degradation process of concrete at the time-scale of nuclear
waste disposal of 300-1000 years. This motivates the analysis of the similarity properties of ‘real’ calcium
leaching in cracked porous cement-based materials, the reference scenario of design and operation of safe
nuclear waste underground storage systems. ‘Real’ calcium leaching in cement-based materials is a multi-
stage process, which involves the successive demineralization of different constituents of the mineral matrix



M. Mainguy et al. | International Journal of Solids and Structures 38 (2001) 7079-7100 7087

at specific calcium ion concentrations in the interstitial pore solution (see e.g. Berner, 1988, 1992; Adenot,
1992; Reardon, 1992). This leads to multiple dissolution fronts and an increase in porosity ¢, which were
not considered in the 1D single phase demineralization process analyzed before. The non-linearity of the
process requires numerical simulations.

3.1. Model, model parameters and finite element implementation of calcium leaching in cracked cement-based
materials

The model we consider is a two-dimensional (2D) extension of the 1D diffusion models, given by Egs.
(1)—(4). The coupled diffusion—dissolution process in the uncracked cement-based material is described by
the molar mass balance equation:

0 Os

Ry (¢c) + a5 V (Dt -Ve) =0 (25)
and a chemical equilibrium condition of the multi-stage dissolution process:

s—g(c) =0. (26)

In (25), ¢ = p,,/-# is the molar concentration of the calcium in the interstitial pore solution. It is related
through the chemical equilibrium condition (26), which replaces (4), to the molar concentration of calcium,
s = my /M, bound in the different minerals of the solid matrix. D is the tensor of effective ion diffusivities
of calcium in the porous material, and depends on the porosity ¢, which in turn depends on the solid
concentration, and thus on the solid molar concentration s. Functions Der = Derr()1 (1 = second-order
unit tensor), ¢ = ¢(s) and the chemical equilibrium condition (26) are fully described in Mainguy et al.
(2000) for a cement paste of water:cement ratio equal to w/c =0.4.

Analogously, the mass balance in the fracture is written in molar form:

Oc
a—V'(Df'VC+VC):0. (27)

In contrast to the simplified 1D-model (i.e., Eq. (2)), the calcium influx (3) from the surrounding porous
material need not to be considered explicitly, but is handled in the 2D-model through the continuity
condition at the fracture-matrix interface. Furthermore, in Eq. (27), the average fluid velocity vector V of
the solvent in the fracture is assumed to be oriented in the y-direction of the fracture, i.e. V = Ve,. The
tensor of hydrodynamic dispersion coefficients in the fracture D; accounts for the molecular diffusion in the
fracture, but also for the fluid mechanical dispersion due to the transversal variations of the fluid velocity
across the fracture (‘Taylor’ dispersion), even though molecular diffusion in concrete applications domi-
nates over fluid dispersion. For the 2D-problem at hand, Dy is given in the form (Bear, 1991):

D =D1+4+uo, Ve, ®e, (28)

with D* the isotropic calcium diffusion coefficient in free water, and «, /" the longitudinal “Taylor’ dispersion

coefficient. In the numerical investigation, the calcium diffusion coefficient is fixed at an upper bound value
of D* =2 x 10~ m?s~!, and the Taylor dispersion coefficient is estimated from Aris (1956) solution:

(2b)* V2

V= . 29

“Y = 21000 (29)

Eqgs. (25)—(29) are solved using the finite element method based on a variational formulation of the

problem with s and ¢ as principal unknowns, linked by the chemical equilibrium condition (26) at the

fracture—matrix interface. In the uncracked matrix, the use of s = s(x, ) as principal unknown within low

order finite elements (linear basis functions), together with an implicit time integration scheme and mass

lumping (see, e.g. Hughes, 1987), ensures an accurate oscillation-free determination of the position of the
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dissolution fronts in time and space. In the fracture, where the bound calcium concentration has no sig-
nificance, the calcium concentration ¢ = ¢(x, ¢) is employed as principal unknown. Finally, the continuity of
both the calcium concentration and the normal calcium flux in the two-field discretization (s in the matrix, ¢
in the fracture) is efficiently realized through the implementation of the chemical equilibrium condition (26)
into two-node penalty elements with ¢; as degree of freedom in the fracture, and s; as degree of freedom on
the matrix side. Last, space and time step increments are selected such to avoid the effects of numerical
dispersion and overshoot, which may result from high fluid flow velocity in the fracture (see, for instance,
Sun, 1996).

Taken the symmetry of the fracture channel and surrounding porous medium, the finite element simu-
lations are realized on half of the geometry displayed on Fig. 1, with a zero flux boundary condition applied
along the fracture center line (symmetry), and on the top and right sides of the rectangular geometry (far
field conditions). Initial conditions correspond to a calcium molar solid concentration of s(x,t=0) =
14.7 x 10° mol/m?, which is related by chemical equilibrium (i.e., Eq. (26)) to an interstitial calcium con-
centration of ¢(x, ¢ = 0) = 21 mol/m* (Mainguy et al., 2000). Two degradation scenarios are studied in what
follows, corresponding to different boundary conditions:

e Z1: A zero calcium concentration prescribed at the inlet of the fracture. This case corresponds precisely
to the simplified 1D-degradation scenario, for which the similarity properties were previously derived. In
this case, the solid material diffusivity in the y-direction is set to zero (i.e., D}y = e, - D¢y - €, = 0), which
implies a zero flux boundary condition along y = 0 and x > b (Logan et al., 1998).

e Z2: A zero calcium concentration prescribed along y = 0 on both solid material and fracture inlet. This
case corresponds to the realistic degradation process of cracked porous media, and will allow us to ana-
lyze the validity of asymptotic behaviors previously identified for the idealized degradation process. In
this case, the solid material diffusivity is assumed isotropic, Deg = Degrl.

3.2. Pure diffusive mass transfer in the fracture

A first application of the model is concerned with the study of the effect of the fracture width for a pure
diffusive mass transfer in the fracture (Pe = 0). For boundary conditions #1, Fig. 3 displays the evolution
of the fracture degradation length y$ versus the quadratic square root of time #'/# for different fracture
openings, ranging from 26 = 0.1 mm to 2b = 1 mm. Fig. 4 shows the same results, but in a plot of y$i/ V2b
versus ¢/# for the maximum and minimum crack opening. Noting that y$if characterizes the position of the
Portlandite dissolution front, which is the first mineral dissolved in cause of ‘real’ calcium depletion, the

numerical results confirm the similarity properties of the asymptotic solution (23), i.e.:

e The asymptotic self-similarity y$i oc #//4, which is reached for large times 7 2 2 years. This is consistent
with the estimated gauge time 7, < 30 d fixed by the application (i.e., t > 1y).

e The v/2b-magnification of the diffusion induced degradation process through the fracture, highlighted by
a perfect alignment of the results along a straight-line in the y$ /v/2b x ¢'/*-plot, displayed in Fig. 4. By
linear regression, the numerical results for # > 2 years can be expressed in the form of (23):

dif
v () 1/4
=1.73t7" - 0.84 30
o (30)

with 34 and 2b in cm, and time 7 in days.

The asymptotic solution (23), therefore, still holds despite the non-linearity of porosity ¢ = ¢(s), dif-
fusivity Der = Derr(¢), and chemical equilibrium condition s = g(c¢), that characterize ‘real’ calcium
leaching. It can be employed for assessing the Portlandite dissolution front, when replacing the diffusivity of
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Fig. 3. Fracture degradation length y, versus #'/# for a pure diffusive mass transport in the fracture, a zero solid matrix diffusivity in the

y-direction and different crack openings 25: (O) 0.1 mm; (@) 0.2 mm; ((J) 0.4 mm; () 0.6 mm; (¢) 0.8 mm; (¢) 1 mm. The solid line
corresponds to the 1D degradation of the solid matrix (x4 = 1.5 x 1072/ with ¢ in days and x4 in ¢cm) (boundary condition #41).
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Fig. 4. Fracture degradation length ys/v/2b versus ¢/* for a pure diffusive mass transport in the fracture, and for different crack
openings 2b: (O) 0.1 mm and (¢) | mm. The solid line corresponds to the linear regression (30) of data for crack widths 0.1, 0.2, 0.4,
0.6, 0.8, and 1 mm, and times ¢ > 2 years. (boundary condition #1).

the solid matrix (D,,) and the porosity (¢) in Eq. (23) by the values of the same parameters of the unde-
graded material.

Finally, from a practical point of view, the confirmed asymptotic behavior suggests — for large times — an
insignificant acceleration of the bulk material degradation through the diffusion dominated mass transfer in
the fracture, in comparison with a 1D-dissolution process that originates from the boundary at x = 0. This
is illustrated in Fig. 3, in which the solid line represents the front position of the 1D-dissolution process
through the bulk material (similarly to Eq. (20)). As time flows, the 1D-degradation process, which evolves

with the square root of time, reaches and overtakes the fracture degradation length y$i(#) evolving with the
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quadratic root of time. This behavior is confirmed through a refined analysis applying boundary conditions
2. The degraded depth y$(z)/v/2b versus ¢'/* is given in Fig. 5, and need to be compared with Fig. 4. We
note a significant deviation from the asymptotic behavior (30) for times ¢ > 2-10 years, depending on the
crack opening. This deviation corresponds to the switch from the diffusion-induced degradation through
the fracture (y§(¢) o #'/#), to the diffusion-induced degradation through the solid porous material (y4(¢) o
#/2); and the time for this switch to occur corresponds to the time it takes the 1D-diffusion—dissolution
process prevailing in the bulk material to reach the slower ¢'/4-diffusion in the fracture. This switch can also
be depicted from Fig. 6, which shows the same as Fig. 5, but now plotted as a function of the square root of

80

60

40t

ya/V2b [cm'/?]

20t

w " n 1 i
0 4 8 12 16 20
$1/4 [dl /4]
Fig. 5. Fracture degradation length y,/v/2b versus ¢'/* for a pure diffusive mass transport in the fracture, isotropic solid matrix dif-

fusivity, and different crack openings 2b: (O) 0.1 mm; (@) 0.2 mm; ((J) 0.4 mm; () | mm. The solid line corresponds to the linear
regression (30) (boundary condition %2).
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Fig. 6. Fracture degradation length y, for a pure diffusive mass transport and different crack openings 26: (O) 0.1 mm:; (@) 0.2 mm; ([J)
0.4 mm; (M) 0.6 mm; (¢) 0.8 mm; (¢) 1 mm. The solid line corresponds to the 1D degradation of the solid matrix (xg = 1.5 x 1072y/¢
with ¢ in days and x4 in cm) (boundary condition %42).
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(@)

(b) (©) (d)

Fig. 7. Solid calcium concentrations for a pure diffusive mass transport in the fracture at different times. (Crack width 26 = 0.4 mm,
mesh = 10 x 12 cm?) (boundary condition #42). (a) 27 years; (b) 158 years; (c) 318 years and (d) 438 years.

time. For large values of time, the degraded depth develops with the same #'/>-kinetics (i.e. same slopes in
Fig. 6), indicating that the degradation process at the fracture-matrix interface is governed by the 1D
diffusive transport prevailing in the bulk material. From the v/2b-dependence of the diffusion dominated
mass transport in the fracture, it is readily understood that this switch occurs the earlier in time and the
stronger, the smaller the fracture opening. Therefore, as expected from physical evidence, the smaller the
fracture opening, the less affects a diffusion-dominated mass transport in the fracture the overall degra-
dation process. The plots of solid calcium concentration displayed in Fig. 7 illustrate this limited effect of a
fracture: for large times, the difference between the positions of the degradation fronts along the fracture
and in the bulk material becomes constant.

3.3. Advection dominated mass transport in the fracture

The acceleration of the chemical degradation at the fracture-matrix interface due to advective mass
transport is displayed in Fig. 8. Applying boundary condition #1, the figure shows the fracture degradation

ya [cm)]

0 100 200 300 400
£1/2 [d1/2]

Fig. 8. Fracture degradation length y, versus ¢/ for advective and diffusive mass transport in the fracture, a zero solid matrix dif-
fusivity in the y-direction, and a crack opening 2b = 0.2 mm. Average fluid velocity V: (Q) 0 cm/day; (@) 4 cm/day; ((J) 8 cm/day; (H)
12 cm/day; (¢) 16 cm/day; (#) 20 cm/day. The solid line corresponds to the 1D degradation of the solid matrix (xg = 1.5 x 1072y/7 with
t in days and x4 in cm) (boundary condition #1).
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Fig. 9. Fracture degradation length y,/V versus ¢'/? for advective and diffusive mass transport in the fracture of opening 2b = 0.2 mm.

Average fluid velocity V: (O) 2 cm/day; (@) 4 cm/day; ((J) 6 cm/day; (l) 10 cm/day; (l) 20 cm/day. The solid line corresponds to the
linear regression of the displayed ({>) data for times ¢ > 2 years (boundary condition #1).
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Fig. 10. Fracture degradation length y,/2b versus ¢'/? for advective and diffusive mass transport in the fracture for two crack openings.
Black symbols correspond to a crack opening 25 = 0.2 mm, and white symbols to 25 = 0.4 mm. Average fluid velocity V: (O) and (@) 2
cm/day; ((J) and (M) 8 cm/day; (¢) and (¢) 14 cm/day; (V) and (V) 20 cm/day (boundary condition #1).

length y4(¢) as a function of the square root of time for a fixed crack opening of 26 = 0.2 mm, and fluid flow
velocities ranging from ¥ = 2 cm/d to ¥ = 20 cm/d. To check the relevance of the asymptotic solution (24),
Figs. 9 and 10 show the same results in a plot of y4(¢)/V versus '/2, and y4(z)/2b versus t'/? for different
crack openings. The results confirm the found asymptotic behavior (24):

e The degraded depth y4(¢) is asymptotically a linear function of the square root of time for ‘high’ fluid
velocities of ¥ = 8 cm/d, corresponding roughly to a Péclet number on the order of Pe = 80 (with
L, ~ 18 cm estimated from Fig. 8).
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e As the velocity increases, the results in Fig. 9 converge to a straight line in a plot of y;/V versus ¢/2,
which represents the asymptotic solution (24).

o For different crack openings (26 = 0.2 mm and 2b = 0.4 mm), the results in Fig. 10 perfectly align along
straight lines in a plot of y4/2b versus '/, as predicted by the asymptotic solution (24). By linear regres-
sion, the results displayed in Figs. 9 and 10 for high fluid velocities (¥ = 10 cm/d) can be expressed in the
form:

adv

()
WL = 025Vi+ 171 (31)

where »3% and 2b are expressed in cm, the fluid velocity ¥ in cm/d, and time ¢ in days. Eq. (31) gives an
upper bound for the evolution of the degradation process in the fracture in the case of advection mass
transport in the fracture.

Finally, the solid straight line in Fig. 8 represents the 1D-dissolution process prevailing in the uncracked
porous medium. In contrast to the diffusion dominated process (see Fig. 3), it appears that the 1D-diffu-
sion—dissolution process is too slow to catch up with the faster degradation process along the fracture
induced by advective mass transport. ‘High’ fluid flow velocities in a fracture, therefore, can induce a
significant acceleration of the overall chemical degradation of the material. This acceleration can be de-
picted from Fig. 11 which shows the solid calcium concentration at different times for a fluid velocity of
V' =10 cm/d and a crack opening of 0.4 mm.

Last, we should note that the dissolution process can become a rate limiting mass transport process for
‘high’ fluid velocity in the fracture, for which the dissolution kinetics can no more be considered as in-
stantaneous with regard to the advection dominated mass transport. In this case, the dissolution kinetics in
the vicinity of the fracture-matrix interface need to be taken into account.

(S—

Fig. 11. Solid calcium concentration for an advective dominated mass transport in the fracture at different times (crack width 256 =
0.4 mm; mesh = 10 x 50 cm?) (boundary condition %2). (a) 27 years; (b) 158 years; (c) 318 years and (d) 438 years.
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Fig. 12. Material degradation in case of a crack network of parallel fractures.

3.4. Effect of a fracture network

The last application we consider is the case of a crack network characterized by parallel fractures of same
width 2b and equal spacing 2L,, as sketched in Fig. 12. This application represents a possible worst case
scenario of multiple cracks that affect the chemical degradation process. Only the case of diffusion domi-
nated mass transport in the fractures will be considered. Taken the symmetry of the regular crack spacing,
the numerical simulations are realized on one half-part of the displayed geometry (i.e. 0 < x < L,, with
x = 0 at the center of the fracture) with symmetrical boundary conditions at x = 0 and x = L,, and a zero
calcium concentration prescribed along y = 0 (i.e., boundary condition %42).

Figs. 13 and 14 show the fracture degradation length yy and the degradation length between two frac-
tures y,, (see Fig. 12) as a function of the square root of time for a crack opening of 25 = 0.2 mm, and
different crack spacings 2L,. Both figures indicate:

e For large times, the degradation lengths y4 and y;,, develop with the square root of time. For large crack
spacings, the kinetics of the degradation follow the one of the 1D-dissolution process. In turn, the in-
creasing slopes for small crack spacings in Figs. 13 and 14 indicate an acceleration of the overall degra-
dation process.

e For a given crack opening 2b and crack spacing 2L,, the same asymptotic slope characterizes the
degradation length kinetics at both the fracture matrix interface, i.e. y; at x = 0, and between two fractures,
i.e. yn at x = L,. This is shown in Fig. 15, and suggests the introduction of the crack spacing factor:

f== (32)

The crack spacing factor is obviously an invariant characterizing the chemical degradation kinetics. This
can be depicted from Fig. 16 , which displays in the y4 versus ¢'/2-plot the same asymptotic slopes for
different crack openings 2b € [0.1, 1] mm, having the same value of crack spacing factor f = 40. The in-
crease in the ¢'/?-slope for different crack spacing factors f is shown in Fig. 17, in which the slope of the
asymptotic linear behavior is normalized by the slope of the 1D behavior (i.e. 1.5 x 10~ cm/s'/?). The
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Fig. 13. Fracture degradation length yy versus #'/2 for 2b = 0.2 mm, and different fracture spacing 2L,: (@) 20 cm; (O) 2 cm; (M) 1.2 cm;
(0) 0.8 cm; (4) 0.4 cm. The solid line corresponds to the 1D degradation (x4 = 1.5 x 1072/ with ¢ in days and x4 in cm) (boundary
condition #2).
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Fig. 14. Degradation length y,, between two fractures versus #'/2 for 2b = 0.2 mm, and different fracture spacing 2L,: (®) 20 cm; (O) 2
cm; (M) 1.2 cm; ((J) 0.8 cm; () 0.4 cm. The solid line corresponds to the 1D degradation (x4 = 1.5 x 10721/¢ with ¢ in days and x4 in
cm) (boundary condition %2).

results confirm, that small values of the crack spacing factor lead to a high acceleration of the degradation
kinetics, while the normalized slope function converges to unity for large values of f.

A first-order analysis of this behavior can be developed with the simplified single phase dissolution
model presented in the first part of this paper. To this end, consider that the propagation of the dissolution
front results from the mass transport in the y-direction in both the material and the fracture, with a dis-
solution front which propagates with the square root of time through the bulk material:

va(t) = 5 VDt (33)
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Fig. 15. Degradation lengths y; (white symbols) and y,, (black symbols) versus ¢'/> for 2b = 0.2 mm, and different fracture spacing 2L,:
(@) and (O) 0.4 cm; (M) and ([J) 2 cm (boundary condition %2).
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Fig. 16. Fracture degradation length y; versus ¢'/2 for two different crack openings, having the same crack spacing factor f = 40. 2b:
(0O) 1 mm; (@) 0.8 mm; ((J) 0.6 mm; (M) 0.4 mm; (¢) 0.2 mm; (¢) 0.1 mm (boundary condition %2).

In Eq. (33), y; is a function to be identified from the jump or Rankine-Hugoniot condition, which expresses
the mass conservation across the dissolution front:

ayd apm apl
(Ls — b)my o (L — b)quﬁa ‘y:yd(t) + bDfa ‘y:yd(t) (34)

The left-hand side in Eq. (34) represents the rate of mineral mass which is dissolved by the moving dis-
solution front from y,(¢) to y4(¢ + d¢) between time 7 and ¢ + dz. This mass rate is transported by diffusive
flux in the solid material and the fracture away from the dissolution front. This is expressed by the right-
hand side of Eq. (34). Furthermore, if we assume the macroscopic solubility ¢ = ¢p,,, /mo much smaller than
unity (i.e. ¢ < 1), the dissolution front will propagate slowly through the material, so that it is reasonable to



M. Mainguy et al. | International Journal of Solids and Structures 38 (2001) 7079-7100 7097

180
16}
=
S 1.4}
~~
~
=
1.2}
1t © 6 0 o 0o O O
0 200 400 600 800 1000

f=Lx/b[1]

Fig. 17. Slope acceleration factor versus crack spacing factor f. The straight line corresponds to Eq. (37), with a value of D¢/ (¢pDy,) =
35.

assume a linear spatial distribution of p, and p, in the y-direction between the boundary of the material
and the dissolution front, i.e. in Eq. (34):

apm ~ peq . % Q—; peq (35)
dy - =ya(1) Wi /Dot dy y=vyalt Wi Dot
Then, substituting Eqs. (33) and (35) in Eq. (34), gives function y;, and the front position:
yalt) = V2e ——VDu (36)

—1¢>D

Note that the term v/2¢ in Eq. (36) is a first order approxmla‘uon of function 2x4(¢) in Eq. (20) for small
values of ¢. Finally, for small values of ¢ letting x4(¢) = v/2ey/Dnt, from Egs. (20) and (36) we obtain an

analytical expression of the slope ratio displayed in Fig. 17:

(37)

The solid line in Fig. 17 which fits the numerical results of model based simulations is obtained with a
diffusivity ratio of D¢/(¢pD,,) = 35. Taken the rough hypotheses required to derive Eq. (37), this fit provides
a reasonable approximation for assessing the effect of a crack network on the overall degradation kinetics
for large times.

4. Conclusion

The chemical degradation of cracked cement-based materials is governed by (i) mass transfer by dis-
solution from the material to the interstitial solution; (ii) molecular diffusion in the porous matrix; (iii)
molecular diffusion and mechanical dispersion in cracks and fractures; and (iv) advection (or convection) in
the fracture channel. Diffusion and advection in the fracture operate in opposite directions. Diffusion
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evacuates calcium ions to the boundary, while advection imports the lower boundary condition into the
fracture. This has the following consequences:

1. Diffusion dominated mass transfer in fractures does not significantly increase the material degrada-
tion. The propagation of the fracture degradation length develops with the quadratic root of time, until the
faster ¢'/2-front propagation through the bulk material catches up with the ¢'/4-degradation process in the
fracture. This shift in self-similarity occurs the earlier the smaller the fracture width, in cracked porous
materials with fractures of aspect ratios L,/2b > 200 (estimated from Eq. (30) and the solution of the 1D-
calcium leaching process). For smaller fracture aspect ratio, a solute congestion will occur in the fracture:
the diffusion in the fracture is too slow to evacuate the mineral dissolved in the adjacent porous materials to
the outside.

2. Advection dominated mass transfer in fractures can significantly accelerate the overall calcium de-
pletion in the porous materials for fluid velocities ¥ = 10 cm/d. In this case, an upper bound assessment of
the advection induced material degradation is provided by Eq. (31), which confirms the similarity properties
of the asymptotic solution: a square-root of time dependence together with a linear dependence of the
fracture degradation length on both velocity ' and crack opening 2b.

3. Diffusive dominated mass transport in a crack network may accelerate the calcium leaching process in
porous materials. However, since the degradation induced through the fracture is restricted to small areas
in the close vicinity of the fracture, the crack spacing must be sufficiently small to enhance the material
degradation, i.e. typically for crack spacing factors f = L,/b < 100. Eq. (37), derived from simplifying
assumptions and validated through model-based simulations, provides a first order estimate of the effect of
a crack network on the acceleration of the calcium degradation as a function of the crack spacing factor f
and the ratio of the fracture and material diffusivities.

4, Temperature effects on the dissolution and transfer processes were not considered in this study. In
concrete applications in nuclear waste disposal systems, temperature gradients with the surrounding en-
vironment may accelerate the material leaching and, more particularly, the mass transfer in the fracture.
Similarly to the effect of the advective term in the solute conduction law, but less pronounced, these
temperature gradients are expected to accelerate the overall chemical degradation process.
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